Mechanisms and Mitigation Strategies for the Occurrence of Continuous Cropping Obstacles of Legumes in China

Author:

Ma Lei1,Ma Shaoying2,Chen Guiping1,Lu Xu3,Chai Qiang1,Li Sheng4ORCID

Affiliation:

1. State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China

2. Laboratory and Practice Base Management Center, Gansu Agricultural University, Lanzhou 730070, China

3. College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China

4. State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China

Abstract

Legumes have important nutritional and economic values, but their production faces continuous cropping obstacles that seriously affect their yield formation. In order to reduce the negative impact of the continuous cropping obstacles of legumes, it is necessary to understand the response mechanisms of legumes to continuous cropping, the causes of continuous cropping obstacles and the measures to alleviate continuous cropping obstacles. This review aimed to identify the current knowledge gap in the field of continuous cropping obstacles of legumes and provide direction and focus for future research. The continuous cropping obstacles of legumes start with soil degradation, leading to oxidative stress in the plants. This triggers the expression of plant-hormone- and signal-molecule-related genes, activating the defense system and causing continuous cropping obstacles. Although there has been progress in researching these challenges in legume crops, many questions remain. We believe that the exploration of molecular mechanisms of legume crops responding to continuous cropping, rhizosphere signal exchange and soil environment repair mechanisms after long-term continuous cropping of soybean, and the excavation of candidate genes and functional loci related to continuous cropping obstacles in legume crops are breakthroughs for proposing effective continuous cropping obstacle management strategies in the future.

Funder

Sheng Li

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3