Winter Triticale: A Long-Term Cropping Systems Experiment in a Dry Mediterranean Climate

Author:

Schillinger William F.ORCID,Archer David W.ORCID

Abstract

Triticale (X Triticosecale Wittmack) is a cereal feed grain grown annually worldwide on 4.2 million ha. Washington is the leading state for rainfed (i.e., non-irrigated) triticale production in the USA. A 9-year dryland cropping systems project was conducted from 2011 to 2019 near Ritzville, WA to compare winter triticale (WT) with winter wheat (Triticum aestivum L.) (WW) grown in (i) a 3-year rotation of WT-spring wheat (SW) -no-till summer fallow (NTF) (ii) a 3-year rotation of WW-SW-undercutter tillage summer fallow (UTF) and (iii) a 2-year WW-UTF rotation, We measured grain yield, grain yield components, straw production, soil water dynamics, and effect on the subsequent SW wheat crop (in the two 3-year rotations). Enterprise budgets were constructed to evaluate the production costs and profitability. Grain yields averaged over the years were 5816, 5087, and 4689 kg/ha for WT, 3-year WW, and 2-year WW, respectively (p < 0.001). Winter triticale used slightly less water than WW (p = 0.019). Contrary to numerous reports in the literature, WT never produced more straw dry biomass than WW. Winter wheat produced many more stems than WT (p < 0.001), but this was compensated by individual stem weight of WT being 60% heavier than that of WW (p < 0.001). Spring wheat yield averaged 2451 vs. 2322 kg/ha after WT and WW, respectively (p = 0.022). The market price for triticale grain was always lower than that for wheat. Winter triticale produced an average of 14 and 24% more grain than 3-year and 2-year WW, respectively, provided foliar fungal disease control, risk reduction, and other rotation benefits, but was not economically competitive with WW. A 15–21% increase in WT price or grain yield would be necessary for the WT rotation to be as profitable as the 3-year and 2-year WW rotations, respectively.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3