A Study on Optimum Insulation Thickness in Walls of Chinese Solar Greenhouse for Energy Saving

Author:

Xu Hui,Ding JuanjuanORCID,Li Tianlai,Mu Chunyan,Gu Xuan,Wang Rui

Abstract

Chinese solar greenhouses (CSGs) are characterized by unique walls to reduce the transmission of heat and promote the energy conservation in winter production, which promotes cultivation in the northeast region of China in winter. Effective selection of insulation material is important for the CSG based on the energy consumption and economic analysis. However, choosing the thickness of the insulation material in walls often discussed with the structure of CSG. There is a lack of research combing the optimal insulation thickness for improving the energy conservation. The aim of this study was to find the optimum insulation thickness during the energy conservation based on the structure of walls, the energy consumption in local climatic conditions, the cost of insulation material, and economic payback period over a lifetime. By the economic analysis of insulation thickness, thermal resistance, lifetime energy saving, and payback period, three kinds of typical walls (clay brick (CB), hollow concrete block (HCB) and fly ash block (FAB)) combed with four insulation materials including the expanded polystyrene, the foamed PVC, the perlite, and the rock wool were calculated. The optimum insulation thickness can be found when energy savings reached the maximum. In the northeast region, the association of FAB with rock wool as the insulation layer was the most economic composite wall structure. The optimum insulation thickness was 0.05 m, with the cost only 5 USD/m2. The thermal resistance of composite wall had a significant effect on the payback period. When thermal resistance increased from 0.2 to 1.2 m2K/W, the payback period varied from 0.4 to 4.3 years. What is more, the energy consumption in local climatic conditions had a more significant effect on payback period. It can be assumed that insulation materials are more favored in cold climatic regions where heating degree-days over 1600 °C days for payback periods is less than 2 years. These results have strong practical and economical significance in saving energy and improving the environment of CSG.

Funder

National Key Research Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference30 articles.

1. Effect of Location and Distribution of Insulation Layers on the Dynamic Thermal Performance of Chinese Solar Greenhouse Walls;Tong;Appl. Eng. Agric.,2014

2. Thermal Environment of Chinese Solar Greenhouses: Analysis and Simulation;Xu;Appl. Eng. Agric.,2013

3. Simulation of thermal performance of solar greenhouse in north-west of Iran: An experimental validation

4. Comprehensive study on the meteorological environment of the sunlight greenhouse I. Preliminary study on the thermal effect of the wall body and covering materials;Chen;Trans. Chin. Soc. Agric. Eng.,1990

5. Heat transfer property of wall in solar greenhouse;Tong;Trans. Chin. Soc. Agric. Eng.,2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3