Influence of Zeolite and Phosphorus Applications on Water Use, P Uptake and Yield in Rice under Different Irrigation Managements

Author:

Zheng ,Chen ,Chi ,Xia ,Wu ,Liu ,Chen ,Meng ,Chen ,Siddique

Abstract

Phosphorus (P) deficiency often occurs in paddy fields due to its high fixation, and low solubility and mobility in soils, especially under water stress. Available soil P and plant P uptake could be improved through the application of zeolite. However, little is known about the impact of zeolite on P uptake in rice under water stress. A two-year lysimetric experiment using a split-split plot design investigated the effects of zeolite (0 or 15 t ha−1) and P (0 or 60 kg ha−1) applications on water use, P uptake, and grain yield in rice under two irrigation management systems (continuous flooding irrigation (CF) and improved alternate wetting and drying irrigation (IAWD)). Both irrigation systems produced equivalent effective panicles and grain yield. Compared with CF, IAWD reduced water use and aboveground P uptake and improved water-use efficiency (WUE) in rice. The applications of zeolite or P alone increased grain yield, WUE, soil available P, and stem, leaf, and panicle P concentration, and aboveground P uptake, but had no significant effect on water use. The enhanced grain yield induced by zeolite was related to the increase in aboveground P uptake. The zeolite application enhanced NH4+–N retention in the topsoil and prevented NO3−–N from leaching into deeper soil layers. Moreover, Zeolite made lower rates of P fertilizer possible in paddy fields, with benefits for remaining P supplies and mitigating pollution due to excessive P. These results suggest that the combined application of zeolite and P under improved AWD regime reduced water use, improved P uptake and grain yield in rice, and alleviated environment risk.

Funder

National Natural Science Foundation of China

Special Fund for Agro-scientific Research in the Public Interest of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3