Priming Effects of Maillard Reaction Precursors on Rice Straw Decomposition at Different Incubation Temperatures

Author:

Wang Nan,Zeng Yuping,Wang Miao,Shen Linjun,Liu Zhijiang,He Long,Zhao Xin,Guo Hongpeng,Liu Yue,Wang ShuaiORCID

Abstract

To verify the priming effects of Maillard reaction precursors on the microbial decomposition of rice straw at different incubation temperatures, the method of indoor incubation at a constant temperature was adopted. In the process, the addition of glucose, catechol or glycine solution alone or in mixed solution was conducted at incubation temperatures of 10 °C, 15 °C and 28 °C, respectively. The C content of humic-extracted acid (CHLE), humification index (the ratio of C content of humic-like acid to fulvic-like acid, CHLA/CFLA), ∆logK value of humic-like acid (HLA), and C content of humin-like acid (CHLu) were dynamically analyzed at 0, 30, 60, and 90 d, respectively. At the same time, the differences in the atomic ratio and FTIR spectra before and after incubation were systematically analyzed. The results showed that (1) the additions of glucose alone and mixed precursors were both beneficial to increasing the CHLE content at three tested temperatures, especially at two low temperatures (10 °C and 15 °C), and glucose alone manifested the most significant improvement in CHLE. In contrast, following the addition of glycine alone, the CHLE content decreased by 2.4% at 15 °C and 4.6% at 28 °C after incubation. (2) Glucose as the sole precursor was more beneficial to improving the quality of the humic substance (HS) at 28 °C, but only enhanced the condensation degree of HLA molecules at 15 °C. Compared with the results at 15 °C and 28 °C, the HLA molecules had the lowest condensation degree at 10 °C, regardless of whether a single precursor or mixed Maillard precursors were used. (3) After incubation, the amounts of N compounds in the HLA molecules decreased to varying degrees, especially at 28 °C. The O-containing functional groups, such as carboxyl groups, from HLA molecules decreased following the addition of a single precursor, while the mixed precursors resulted in an increase in O-containing functional groups. Increasing the catechol content directly enriched the unsaturated bonds of HLA. With the decomposition of rice straw, regardless of how the precursors were added, the polysaccharide content decreased to different degrees. The decomposition of polysaccharides in HLA was more temperature-sensitive, and an increase in temperature might encourage more polysaccharide consumption. Under each temperature, the molecular structure of HLA was simplified initially and then gradually became complex. Finally, the addition of glucose alone at 15 °C was more favorable for the complexity of HLA molecules, while at 28 °C, it could only alleviate the degree of simplification of the HLA molecular structure to a certain extent. (4) At the three tested temperatures, compared with the CK control, either one precursor or a mixture of three precursors could more effectively promote the decomposition of CHLu. Under the conditions of 10 °C and 15 °C, the addition of mixed precursors was more beneficial to the decomposition of CHLu, causing the CHLu content to decrease by 37.9% and 44.7%, respectively, followed by the addition of glucose alone.

Funder

Jilin Province Key R & D Program Project

Jilin Province 18th Innovative and Entrepreneurial Talent Funding Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3