RNAi-Mediated Interference with EonuGR1 Affects the Recognition of Phenylacetaldehyde by Empoasca onukii Matsuda (Hemiptera: Cicadellidae)

Author:

Zhang Ruirui12,Lun Xiaoyue2,Zhao Yunhe2,Zhang Yu2,Cao Yan2,Zhang Xiangzhi2,Jin Meina2,Zhang Zhengqun2ORCID,Xu Xiuxiu1

Affiliation:

1. Tea Research Institute, Shandong Academy of Agricultural Science, Jinan 250100, China

2. College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China

Abstract

Empoasca onukii Matsuda is a primary pest of the tea plant Camellia sinensis (L.) O. Ktze that severely influences the production and quality of tea products. Gustatory receptors (GRs) are an indispensable part of the E. onukii chemosensory machinery as members of the G-protein coupled receptor family. Insect odor and gustatory receptors are consumingly sensitive and selective sensory receptors to search for foraging, mates, and spawning sites. In this study, the gustatory receptor EonuGR1 was cloned and analyzed bioinformatically, and the expression levels of EonuGR1 in diverse tissues of E. onukii were tested via qRT-PCR. The behavioral response of E. onukii to volatile compounds was determined via RNA interference and Y-tube olfactometer assays to investigate the role of EonuGR1 in the olfactory recognition of E. onukii. The coding sequence length of EonuGR1 was 1062 bp, and the length of the protein encoded by EonuGR1 was 40.52 kD. The highest interference efficiency was observed after 3 h of dsEonuGR1 treatment via root soak treatment. Moreover, the response rates to phenylacetaldehyde at concentrations of 10 and 0.1 µL/mL were significantly downregulated in E. onukii. The responses to phenylacetaldehyde at concentrations of 10 and 100 µL/mL showed a significant decrease after dsEonuGR1 treatment for 12 h in E. onukii. In conclusion, EonuGR1 was highly expressed in the abdomen and functioned in olfactory recognition of the tea plant volatile phenylacetaldehyde by E. onukii. Overall, EonuGR1 has the potential as a gene target for the design of effective control strategies against E. onukii.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Development Program of Shandong Province

Project of Laoshan District Tea Innovation Group

Key Research and Project for Technological Innovation and Development of Tai’an

Project for Special Commissioners in Agricultural Science and Technology of Tai’an

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference82 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3