Abstract
Generative tillers are a source of assimilates necessary for the seed formation. However, their excessive elongation, especially under high doses of nitrogen, increases the susceptibility to lodging. The growth of generative shoots depends, among others on the root biomass affecting nutrient uptake, and on the ability to form rhizomes, as well as on the competitiveness of parallel developing vegetative tillers. Two-replicate field experiments were performed in Poland (53°09′ N, 17°35′ E), to determine the effect of plant growth regulators (PGRs) (single application of chloromequat chloride (CCC) at BBCH 30-31 or sequential treatment CCC at BBCH 30-31 + ethephon (ET) or CCC at BBCH 30-31 + trinexapac-ethyl (TE) at BBCH 37-39, and N fertilization (40 and 70 kg ha−1) on the length of generative tillers, the weight of generative and vegetative tillers, the canopy height, the weight of roots and rhizomes, and on N uptake in Festuca rubra L ssp. rubra (strong creeping red fescue) and F. r. L ssp. commutata (Chewings red fescue). Chewings red fescue turned to be more sensitive to the retardants. Generative tillers were shorter after single application of CCC as well as sequential treatment CCC + ET or TE. The tillers of strong creeping red fescue were shortened only after the application of CCC + TE. In every PGR treatments the canopy height at harvest was greater than in the control. Increasing the N rate from 40 to 70 kg ha−1 caused the reduction canopy height of strong creeping red fescue. Increased production of above-ground biomass, especially generative tillers, resulted in an increase in N accumulation in Chewings red fescue, as compared with strong creeping. Increasing the nitrogen rate from 40 to 70 kg ha−1, despite the reduction of root dry matter weight, stimulated generative tiller dry matter accumulation but it did not affect the biomass of vegetative tillers.
Subject
Agronomy and Crop Science