Affiliation:
1. Leibniz Centre for Agricultural Landscape Research (ZALF), “Landscape Pedology” Working Group, Research Area 1 “Landscape Functioning”, 15374 Müncheberg, Germany
2. Institute of Geography and Environmental Science, University of Potsdam, 14476 Potsdam, Germany
Abstract
Visible and near-infrared (vis-NIR) spectroscopy has proven to be a straightforward method for sample preparation and scaling soil testing, while the increasing availability of high-resolution remote sensing (RS) data has further facilitated the understanding of spatial variability in soil organic carbon (SOC) and total nitrogen (TN) across landscapes. However, the impact of combining vis-NIR spectroscopy with high-resolution RS data for SOC and TN prediction remains an open question. This study evaluated the effects of incorporating a high-resolution LiDAR-derived digital elevation model (DEM) and a medium-resolution SRTM-derived DEM with vis-NIR spectroscopy for predicting SOC and TN in peatlands. A total of 57 soil cores, comprising 262 samples from various horizons (<2 m), were collected and analysed for SOC and TN content using traditional methods and ASD Fieldspec® 4. The 262 observations, along with elevation data from LiDAR and SRTM, were divided into 80% training and 20% testing datasets. By employing the Cubist modelling approach, the results demonstrated that incorporating high-resolution LiDAR data with vis-NIR spectra improved predictions of SOC (RMSE: 4.60%, RPIQ: 9.00) and TN (RMSE: 3.06 g kg−1, RPIQ: 7.05). In conclusion, the integration of LiDAR and soil spectroscopy holds significant potential for enhancing soil mapping and promoting sustainable soil management.
Funder
German Federal Ministry of Education and Research
Subject
Agronomy and Crop Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献