Soil-Mediated Effects on Weed-Crop Competition: Elucidating the Role of Annual and Perennial Intercrop Diversity Legacies

Author:

Menalled Uriel D.ORCID,Bybee-Finley K. AnnORCID,Smith Richard G.,DiTommaso AntonioORCID,Pethybridge Sarah J.ORCID,Ryan Matthew R.ORCID

Abstract

Crop diversity may mediate the intensity of weed-crop competition by altering soil nutrient availability and plant-soil microbe interactions. A greenhouse experiment was conducted to analyze weed-crop competition in soils with varying crop diversity legacies. Soil greenhouse treatments included field soils (i.e., soil nutrient and microbial legacies), a sterile greenhouse potting mix inoculated with microorganisms of the field soils (i.e., microbial legacies), and a sterile greenhouse potting mix. Soils for the greenhouse experiment were sampled and assessed after two-years of conditioning with annual and perennial cropping systems under four levels of intercrop diversity. The greenhouse experiment involved growing one sorghum sudangrass (Sorghum bicolor (L.) Moench × S. sudanese Piper) crop plant and zero to six common lambsquarters (Chenopodium album L.) weed plants in soil from each diversity and cropping system treatment. The weed density treatments created a weed-crop competition gradient, which was used to quantify legacy effects of crop diversity. Weed-crop competition increased with crop diversity in both the field soil and inoculated soil treatments in the annual system. In the perennial system, differences in weed-crop competition intensity were driven by crop yield potential. In the perennial field soil treatment, crop yield potential was greatest in the highest diversity treatment, whereas in the perennial inoculated soil treatment, crop yield potential was greatest in the lowest diversity treatment. Results show potential for negative effects from previous crop diversity on weed-crop competition, and the divergent impact of microbial and nutrient legacies on crop yield potential. Future research should aim to evaluate the consistency of legacy effects and identify principles that can guide soil and crop management, especially in conservation agriculture where soil tillage and its microbial legacy reducing effects are minimized.

Funder

National Institute of Food and Agriculture

Robert and Janice McNair Foundation

David R. Atkinson Center for a Sustainable Future , Cornell University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3