Cropping System Redesign for Improved Weed Management: A Modeling Approach Illustrated with Giant Ragweed (Ambrosia trifida)

Author:

Liebman Matt,Nichols Virginia A.ORCID

Abstract

Weeds present important challenges to both conventional farmers who rely on herbicides and organic farmers who rely on cultivation. Data from field experiments indicate that diversifying crop sequences with additional species can improve weed suppression when either herbicides or cultivation serve as primary control tactics. Here, we report the results of modeling analyses that investigated how cropping system diversification would affect the population dynamics of giant ragweed (Ambrosia trifida L.), an annual dicotyledonous species that is problematic in the central U.S. for both conventional and organic farmers. We found that to prevent an increase in giant ragweed density, the minimum control efficacy needed from herbicides or cultivation used in corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) would be 99.0% in a 2-year corn–soybean system, but 91.4% in a 5-year corn–soybean–rye (Secale cereale L.)–alfalfa (Medicago sativa L.) system. Thus, the diversified rotation would be better buffered against less-than-perfect weed control during corn and soybean phases. Further modeling analyses indicated that the weed suppression effect associated with greater rotation length was attributable not only to increased crop species richness but also to greater temporal variation in planting dates. A planting interval variation index (PIVI), calculated as the coefficient of variation in months between planting activities, was strongly associated with the weed suppressive ability of the rotations we modeled and may be a useful metric for designing other cropping systems. Overall, our results indicate that diversified rotation systems that include both annual and perennial crops are likely to be valuable for managing problematic weed species.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference51 articles.

1. Crop losses to pests

2. Trends in the development of herbicide-resistant weeds;Heap,2018

3. Assessing and minimizing the environmental effects of herbicides;Preston,2018

4. Weed Management in 2050: Perspectives on the Future of Weed Science

5. A Risk Management Perspective on Integrated Weed Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3