Influences of Exogenic Organic Materials Application on Soil Fertility Status and Paddy Growth under a Coastal Saline Soil Condition

Author:

Zuo Wengang12,Zhou Yuxi1,Yao Yutian3,Chen Chao3,Wang Fan4,Peng Hao4,Qin Tianyang1,Li Yunlong1ORCID,Chen Shuotong1,Yao Rongjiang5ORCID,Shan Yuhua16,Bai Yanchao126ORCID

Affiliation:

1. College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China

2. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

3. Jiangsu Coast Development Group Co., Ltd., Nanjing 210003, China

4. Jiangsu Coast Ecological Technology Development Co., Ltd., Nanjing 210003, China

5. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

6. Key Laboratory of Arable Land Quality Monitoring and Evaluation, Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, China

Abstract

Paddy cultivation in saline soil can rapidly reduce soil salinity, which is an important approach for managing, utilizing, and improving such soils. However, the high salinity of saline soil severely limits the sustainability of paddy production. Adding exogenic organic material to improve soil fertility in saline soil is a key measure for obtaining high-yield, efficient and sustainable cultivation of paddy. This study used a field experiment to explore the influences of different organic materials application on soil desalination and fertility improvement in saline paddy soil. The results showed that the application of dairy manure (DM), sludge vermicompost (SV), and vinegar residue (VR) reduced soil barrier factors, including electrical conductivity (EC) and pH, increased soil fertility, including soil organic carbon (SOC), nitrogen (N), and phosphorus (P), and promoted paddy growth in saline soil. Specifically, soil EC decreased by 29.0%, 32.9% and 49.4% and paddy biomass increased by 27.7%, 63.7% and 107.6% in DM, SV, and VR-treated soils with the highest application rates, respectively, compared to the control. At an equal carbon application rate, VR was more conducive to decreasing soil EC and pH and increasing paddy biomass. Compared to DM and SV, VR addition resulted in an average decrease of 20.7% and 19.1% in soil EC, respectively, and an average increase of 57.3% and 29.5% in paddy biomass. In addition, soil water-stable aggregates (WSA), SOC, N, and P contents in VR-treated soil were lower than those in DM and SV-treated soils. Correlation and path analysis revealed that there was a significant negative correlation between paddy biomass and soil barrier factors. However, EC in VR-treated soil had a direct negative effect on paddy biomass, while EC in DM and SV-treated soils had an indirect negative effect on paddy biomass. Additionally, the direct contribution of soil pH to paddy biomass was higher with VR (−1.49) than that with DM (−0.21) and SV (0.89). In contrast to DM and SV, the effect of soil WSA on paddy biomass in VR-treated soil was mainly an indirect positive effect, and the direct effect was negative. The corresponding results provided new options and ideas for the efficient utilization of saline soils and high-yield cultivation of paddy.

Funder

Key Research and Development Project of Jiangsu Coast Development Group Co., Ltd.

State Key Laboratory of Organic Geochemistry, GIGCAS

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

State Key Laboratory of Pollution Control and Resource Utilization

Jiangsu Agricultural Industry Technology System

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3