Expected Changes to Alpine Pastures in Extent and Composition under Future Climate Conditions

Author:

Dibari CamillaORCID,Costafreda-Aumedes SergiORCID,Argenti GiovanniORCID,Bindi MarcoORCID,Carotenuto Federico,Moriondo MarcoORCID,Padovan Gloria,Pardini Andrea,Staglianò Nicolina,Vagnoli CarolinaORCID,Brilli LorenzoORCID

Abstract

As the basis of livestock feeding and related performances, pastures evolution and dynamics need to be carefully monitored and assessed, particularly in the Alps where the effects of land abandonment are further amplified by climate change. As such, increases in temperature associated with changes in precipitation patterns and quantity are leading to modifications of grassland extent and composition with consequences on the pastoral systems. This study applied a machine learning approach (Random Forest) and GIS techniques to map the suitability of seven pasture macro types most representative of the Italian Alps and simulated the impact of climate change on their dynamics according to two future scenarios (RCP4.5, 8.5), two time-slices (2011–2040, 2041–2070), and three RCMs (Aladin, CMCC, ICTP). Results indicated that (i) the methodology was robust to map the current suitability of pasture macro types (mean accuracy classification = 98.7%), so as to predict the expected alterations due to climate change; (ii) future climate will likely reduce current extend of suitable pasture (−30% on average) and composition, especially for most niche ecosystems (i.e., pastures dominated by Carex firma and Festuca gr. Rubra); (iii) areas suited to hardier but less palatable pastures (i.e., dominated by Nardus stricta and xeric species) will expand over the Alps in the near future. These impacts will likely determine risks for biodiversity loss and decreases of pastoral values for livestock feeding, both pivotal aspects for maintaining the viability and profitability of the Alpine pastoral system as a whole.

Funder

LIFE programme

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference81 articles.

1. Climate Change in the European Alps,2007

2. Natura 2000 in the Alpine Region;Sundseth,2009

3. Grasslands-more important for ecosystem services than you might think

4. The Economics of Ecosystems and Biodiversity: Mainstreanubg the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB,2010

5. Mountain Ecosystem Services: Who Cares?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3