Soil Microbial and Enzymatic Properties in Luvisols as Affected by Different Types of Agricultural Land-Use Systems and Soil Depth

Author:

Piotrowska-Długosz Anna1,Długosz Jacek1,Kalisz Barbara2ORCID,Gąsiorek Michał3ORCID

Affiliation:

1. Laboratory of Soil Science and Biochemistry, Department of Biogeochemistry and Soil Science, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bernardyńska 6 St., 85-029 Bydgoszcz, Poland

2. Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland

3. Department of Soil Science and Agrophysics, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland

Abstract

Determination of the microbial and enzymatic properties in soil is primarily concentrated on the surface layers of the soil profiles; however, it is well known that the transformation of soil organic matter also occurs in the deeper horizons of the soil profile. The aim of this study was to assess any changes in specific sets of enzyme activities and their associated physicochemical properties as affected by two different agricultural land-use systems and soil depth. Changes in the studied properties were determined across four Luvisol profiles in two agricultural land uses (arable land and vineyards). The enzyme activities associated with the transformation of C, N and P were analyzed. Additionally, the activity of some oxidoreductases and the fluorescein diacetate hydrolysis (FDAH) rate were also determined. Moreover, the content of the various forms of soil carbon, nitrogen, phosphorus (including microbial biomass C, N and P) and some other properties (pH, clay and silt content) were assessed. Agricultural land use significantly affected the microbial biomass content and as well as the studied enzyme activities. Most of the studied enzymes exhibited a higher activity in the grapevine (GV) profiles, which was followed by the winter wheat (WW) profiles; however, the largest variability occurred for the urease activity. There was no clear differentiation between the two studied land uses for the activity of nitrate reductase, dehydrogenases, acid phosphatase, or endo- and exo-cellulase. Irrespective of the plant being cultivated, the soil variables decreased significantly with increasing soil depth, wherein the greatest changes were observed between the surface and sub-surface soil horizons (I–II). The activity of some enzymes (e.g., the urease activity in WW profiles) decreased gradually across the soil profiles, while others were located almost solely within the surface layers (e.g., the nitrate reductase activity in the GV profiles as well as invertase in the WW profiles). The α-glucosidase activity did not exhibit any statistically significant changes along the analyzed profiles. The activity of phenol oxidase and peroxidase also revealed different trends along the studied profiles compared to the other enzymes and did not decrease gradually with depth. The microbial biomass of the C, N and P content was generally the highest in the upper horizons and gradually decreased with depth, wherein the largest decrease was observed between the surface and sub-surface horizon. The studied enzyme activities were more dependent on the soil carbon content compared to the other soil properties. And thus, in the C-rich horizons (C > 4 g kg) for the surface and subsurface layers the enzyme activities were highly correlated with TOC, DOC and MBC content as compared to the deeper, C-low horizons (C < 4 g kg). By examining how the microbial and enzymatic properties change across the soil profiles, it is possible to gain valuable insight into the long-term biogeochemical processes that are involved in soil fertility and in the health of agricultural ecosystems.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference83 articles.

1. Comparison of enzyme activity with depth under tea plantations and forested sites in south India;Sinsabaugh;Geoderma,2006

2. Distribution of extracellular enzymes in soils: Spatial heterogeneity and determining factors at various scales;Baldrian;Soil Sci. Soc. Am. J.,2014

3. Microbial biomass and enzyme activity in vineyard soils under organic and conventional farming systems;Okur;Turk. J. Agric. For.,2009

4. Phenol oxidase, peroxidase and organic matter dynamics of soil;Sinsabaugh;Soil Biol. Biochem.,2010

5. Dehydrogenase activity response to soil reoxidation process described as varied condition of water potential, air porosity and oxygen availability;Bennicelli;Pol. J. Environ. Stud.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3