Affiliation:
1. College of Life Sciences, Northwest A&F University, Yangling 712100, China
2. College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
3. State Key Laboratory of Soil Erosion and Dry Land Farming, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
Abstract
Sunflower broomrape (Orobanche cumana Wallr.) has severely restricted the development of the sunflower industry in China, and more efficient and convenient control methods are urgently needed. In this experiment, we investigated the effects of N, P and silica fertilizers on the parasitism rate of O. cumana, as well as on the yield of sunflower and native microbial communities in the field. Firstly, pot experiments were conducted to select the most effective fertilization method and to determine the physiological and biochemical indexes of sunflowers. Subsequently, field application studies were carried out to determine the physiological indexes, yield, O. cumana parasitism on sunflower, and the effect on the indigenous microbial community. The results demonstrate that compared with the CNP treatment (Control), the number of parasites under the N1P5 treatment significantly decreased by 66.15%. The exogenous application of silica can significantly reduce the number of O. cumana parasites. The treatments with N1P5 (N/P = 1:5) and available SiO2 content higher than 40 mg/kg (NS2, NS3, SF2 and SF3) significantly increased superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) content in sunflower leaves. In the field, fertilization significantly decreased the number of O. cumana parasites. The S treatment improved the native microbial community structure and enriched beneficial microorganisms, including Vicinamibacteria and Pyrinomonadaceae. Additionally, applying the S treatment significantly increased sunflower yield by 23.82% and crude protein content by 20.20%. In summary, the application of silicon fertilizer can effectively improve the host microbial community, reduce O. cumana parasitism and improve the yield and quality of sunflower.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China Young Scientists Fund