Abstract
The urgency to reduce resource depletion and waste production is expected to lead to an economy based on renewable resources. Biofuels, for instance, are a great green alternative to fossil fuel, but they are currently derived from edible vegetable oils such as soybean, palm, and sunflower. Concerns have been raised about the social–economic implication and ecological impacts of biodiesel production. Cultivating new lands as biodiesel feedstock rather than food supply, with the consequent increase in food prices, leads to so-called indirect land-use change (ILUC). Establishing bioenergy crops with phytoremediation ability on contaminated soils offers multiple benefits such as improving soil properties and ecosystem services, decreasing soil erosion, and diminishing the dispersion of potentially toxic elements (PTEs) into the environment. Castor bean is an unpalatable, high-biomass plant, and it has been widely demonstrated to possess phytoremediation capability for several PTEs. Castor bean can grow on marginal lands not suitable for food crops, has multiple uses as a raw material, and is already used in biodiesel production. These characteristics make it perfect for sustainable biodiesel production. Linking biofuel production with environmental remediation can be considered a win–win strategy.
Subject
Agronomy and Crop Science
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献