Physiological and Transcriptome Analysis Reveals the Differences in Genes of Antioxidative Defense Components and Cold-Related Proteins in Winter and Spring Wheat during Cold Acclimation

Author:

Lu Xiaoguang1,Wu Yuhan1,Tang Chaoyue1,Liu Chang1,Li Ninghui1,Du Yuchen1,Fu Lianshuang1,Liu Xin1,Liu Jun12ORCID,Wang Xiaonan1ORCID

Affiliation:

1. College of Agriculture, Northeast Agricultural University, Harbin 150031, China

2. National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

Recent findings suggest that cold acclimation can enhance cold resistance in wheat. Dongnongdongmai 1 (DM1) is a winter wheat variety that can overwinter at −30 °C; however, its cold acclimation mechanism is yet to be fully elucidated. Here, we elucidated the potential mechanisms of cold acclimation in DM1 and the China Spring (CS) variety, especially the role of the antioxidant system, using transcriptome and physiological analyses. Cold stress increased H2O2 and O2− production in both varieties; however, CS had higher contents of H2O2 and O2− than DM1. Moreover, cold significantly increased ROS-scavenging activities in DM1, especially at 30 days after exposure. Gene ontology (GO) analysis showed that differentially expressed peroxidase (POD) genes were enriched in antioxidant activity, with most POD genes being significantly upregulated in DM1 under cold acclimation. Additionally, cold acclimation increased the expression of cold acclimation protein (CAP), late embryogenesis abundant protein (LEA), and cold-responsive genes in both varieties, with higher expression levels in DM1. Overall, the results showed that DM1 exhibited a higher cold tolerance than CS during cold acclimation by increasing the expression of POD genes, LEA, CAP, and cold-responsive proteins, improving the understanding of the mechanism of cold resistance in DM1.

Funder

National Natural Science Foundation of China

the Academic Backbone Program of Northeast Agricultural University

Collaborative Innovation and Extension System of modern Agricultural Industrial Technology Wheat in Heilongjiang Province

Scientific Observation and Experiment Station of Crop Cultivation in Northeast China of Ministry of Agriculture

Rural Affairs/Key Open Laboratory of Crop Variety Improvement and Physiological Ecology in Cold Region

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3