Impacts of Tamarix (L.) Litter and Mycorrhizal Amendments on Baccharis salicifolia (Ruiz & Pav.) Pers. Competitiveness and Mycorrhizal Colonization

Author:

Murray Leeland,Schutte Brian J.,Ganguli Amy C.,Lehnhoff Erik A.

Abstract

Tamarix spp. are ecological threats in the Southwest U.S.A. because they displace native vegetation, increase soil salinity, and negatively affect soil microbial communities. After Tamarix L. removal, legacy effects often necessitate restoration to improve ecosystem services of Tamarix-impacted communities. Commercial mycorrhizae fungal inoculation has been recommended to improve restoration success, although inoculation treatments are rarely tested on lesser-known facultative riparian species. Our study asked two questions: (1) Can a commercial mycorrhizal fungal inoculant increase native Baccharis salicifolia (Ruiz & Pav.) Pers. (mule-fat) performance against Tamarix chinensis Lour. (i.e., tamarisk) and is this influenced by tamarisk leaf litter? (2) Is mycorrhizal colonization of mule-fat roots influenced by tamarisk stem density and leaf litter? A greenhouse experiment was performed with mule-fat cuttings in soil collected from a tamarisk monoculture. Treatments were factorial combinations of tamarisk stem densities (0, 1, 2, 3, 4 stems pot−1) with or without mycorrhizal inoculation and tamarisk litter. There were five replications and two greenhouse runs. The total biomass of both species was determined and mule-fat arbuscular mycorrhizal colonization rates were determined via the magnified intersection method. Increasing tamarisk biomass negatively affected mule-fat biomass, but there were interactions with tamarisk biomass, litter and mycorrhizal inoculation, with litter and inoculation increasing mule-fat growth at high tamarisk biomass. Arbuscular mycorrhizal colonization was high in all treatments, yet at higher tamarisk stem densities, inoculation and litter improved colonization. Interestingly, litter did not negatively impact mule-fat as predicted. Moreover, litter and mycorrhizal inoculum interacted with tamarisk to improve mule-fat growth at higher tamarisk biomass, suggesting an opportunity to improve restoration success when in competition with tamarisk.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3