Ensemble Learning Simulation Method for Hydraulic Characteristic Parameters of Emitters Driven by Limited Data

Author:

Yu Jingxin12ORCID,Zhangzhong Lili1,Lan Renping3,Zhang Xin45,Xu Linlin26,Li Jingjing45

Affiliation:

1. National Engineering Research Center for Intelligent Equipment in Agriculture, Beijing 100097, China

2. School of Land Science and Technology, China University of Geosciences, Beijing 100083, China

3. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

4. National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China

5. Key Laboratory for Quality Testing of Software and Hardware Products on Agricultural Information, Ministry of Agriculture and Rural Affairs, Beijing 100097, China

6. Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract

The emitter is one of the most critical components in drip irrigation. The flow path geometry parameters have a significant effect on the emitter’s hydraulic performance and have a direct impact on the emitter’s irrigation uniformity and lifetime. The hydraulic characteristics of the emitter are the key indicators of its performance. However, obtaining the hydraulic characteristics of the emitter is complex. Typically, only a small number of calibrations are performed for specific equipment models, making it difficult to obtain the parameter. Therefore, limited data corresponding to the morphological parameters and the flow rate were simulated using the FLUENT software, and the influence of the characteristics was analyzeanalyzed, based on which a flow rate prediction model was constructed using the ensemble learning (CatBoost) model. The extended data set was generated by stochastic simulation and parameter fitting. The flow index and flow coefficient prediction model were built and evaluated using the CatBoost model again with the augmented data set as a benchmark. The results show that the significant correlation between the geometric structure and the flow index and flow coefficient provides the basis for the correlation model. CatBoost can fit the complex nonlinear relationships between the parameters well, achieving excellent simulation accuracy for the flow rate (R2 = 0.9987), flow index (R2 = 0.9961), and flow coefficient (R2 = 0.9946), where the path width has the highest importance score in the model construction for the flow index (score = 55.97) and flow coefficient (score = 45.2). Furthermore, the CatBoost models used in this study achieved the best prediction results compared to seven typical models (XGBoost, Bagging, Random Forest, Tree, Adaboost, and KNN).

Funder

National Natural Science Foundation of China

Key Research and Development Projects of Hebei Province

Beijing Digital Agriculture Innovation Team Digital Facility Application Scene Construction Position

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3