Impact of Cultivar, Harvest Date and Threshing Parameter Settings on Floret and Carthamidin Yield of Safflower

Author:

Steberl KathrinORCID,Hartung Jens,Graeff-Hönninger SimoneORCID

Abstract

The industrial need for safflower (Carthamus tinctorius L.) increased over the last decade due to its potential use as food colorant. Safflower is mainly cultivated in Asia for its use as floret. In Germany, an economically attractive cultivation for floret use would require a mechanization of harvest. In order to develop a mechanical harvesting system, field experiments were conducted at the experimental station Ihinger Hof of the University Hohenheim in 2017 and 2018. Safflower was harvested with a combine harvester to obtain the florets. Two safflower (i) cultivars were harvested with (ii) three threshing parameter settings on (iii) five harvest dates to evaluate threshed floret yield, dry matter and carthamidin content, and carthamidin yield. Results showed that the maximum threshed floret yield was achieved at the latest harvest date (784.78–1141.76 kg ha−1), while the highest carthamidin contents were observed depending on cultivar on the first two harvest dates (0.53–3.14%). The decisive and resulting amount of carthamidin yield reached its maximum with the Chinese cultivar and the threshing parameter setting P3 between the fourth and fifth harvest date in 2018 (19.05–19.36 kg ha−1). Highest dry matter contents were achieved at the last harvest date (62.67–77.77%). Individual capitula weight and carthamidin content decreased with later harvest dates. Further investigations should clarify whether the individual capitula weight and carthamidin content correlate with each other or are independent of the date of harvest. This could be a decisive criterion for the selection of cultivars for harvesting florets with a combine harvester. Reduced costs of machine harvesting compared to hand harvesting will make the cultivation of safflower for the food coloring industry in Germany more attractive in the future.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3