Influence of Soil Properties and Initial Concentration on the Fractionation of Nickel, Zinc, Copper and Lead in Soils Derived from Different Parent Materials

Author:

Campillo-Cora Claudia,Rodríguez-González Laura,Arias-Estévez ManuelORCID,Fernández-Calviño DavidORCID,Soto-Gómez Diego

Abstract

Different fractions of Ni, Zn, Cu and Pb were determined in metal-spiked forest soils derived from four parent materials using three extractants (H2O, CaCl2 and diethylenetriaminepentaacetic acid (DTPA)). It is important to determine how parent materials and soil properties affect the retention of these metals in order to predict their behavior and act accordingly in the event of accidental spillage, for example. The extraction of fractions was not sequential (before carrying out the extractions, the soil samples were divided into three parts), so the CaCl2 fraction also included the H2O one, and the DTPA fraction contained the other two. With the results, we developed models to predict the extraction of each fraction employing the physicochemical characteristics of the soil (e.g., pH, organic matter content and texture values) and the amount of metal added. The objective of this work was to determine how the properties of the soil would influence the fractioning of the metals considered, and through these characteristics create models to predict the behavior of each metal fraction. We found correlations between the different fractions of Ni and Zn, suggesting that there are soil properties that condition the retention of both metals. Pb and Cu showed different behavior than Zn or Ni, since the proportions extracted by H2O and CaCl2 were much lower. Regarding the DTPA fraction, unlike the case of Ni or Zn, the extraction of Cu and Pb was more homogeneous; they did not show great variation in different soils, even when considering the results of extraction in limestone soils. This may be due to the fact that the soil properties do not exert an important effect on their availability, or these two metals are considerably sensitive to the effect of pH, and no differences were observed because the extraction of the DTPA fraction was conducted with a buffered solution. For each fraction of metal used, we obtained a model with R2 always greater than 0.65. Considering these results, we can conclude that it is possible to predict Zn, Ni, Cu and Pb availability in soils developed on different parent materials. This can be achieved by identifying some basic soil characteristics and applying the developed equations.

Funder

Spanish Ministry of Economy and Competitiveness

Xunta de Galicia

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3