Detection of Crop Hail Damage with a Machine Learning Algorithm Using Time Series of Remote Sensing Data

Author:

Sosa LeandroORCID,Justel AnaORCID,Molina ÍñigoORCID

Abstract

Hailstorms usually result in total crop loss. After a hailstorm, the affected field is inspected by an insurance claims adjuster to assess yield loss. Assessment accuracy depends largely on in situ detection of homogeneous damage sectors within the field, using visual techniques. This paper presents an algorithm for the automatic detection of homogeneous hail damage through the application of unsupervised machine learning techniques to vegetation indices calculated from remote sensing data. Five microwave and five spectral indices were evaluated before and after a hailstorm in zones with different degrees of damage. Dual Polarization SAR Vegetation Index and Normalized Pigment Chlorophyll Ratio Index were the most sensitive to hail-induced changes. The time series and rates of change of these indices were used as input variables in the K-means method for clustering pixels into homogeneous damage zones. Validation of the algorithm with data from 91 soybean, wheat, and corn plots showed that in 87.01% of cases there was significant evidence of differences in average damage between zones determined by the algorithm within the plot. Thus, the algorithm presented in this paper allowed efficient detection of homogeneous hail damage zones, which is expected to improve accuracy and transparency in the characterization of hailstorm events.

Funder

MITECO

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3