Intercropping Pattern and N Fertilizer Schedule Affect the Performance of Additively Intercropped Maize and Forage Cowpea in the Mediterranean Region

Author:

Salama Heba S. A.ORCID,Nawar Ali I.,Khalil Hassan E.

Abstract

Intercropping maize and forage cowpea is a widely proposed strategy to improve land use efficiency, and maximize the economic value of the farming system, especially in developing countries with restricted resources. The current study was carried out during the successive summers of 2020 and 2021 in Northern Egypt. The main objective was to evaluate the effect of three N schedules (NS1, NS2, NS3), when three different maize–cowpea intercropping patterns (IP1, IP2, IP3) were applied, on the grain yield of maize, forage yield and quality of forage cowpea. In addition, yield gain and land use efficiency were evaluated using the land equivalent ratio (LER) and dry matter equivalent ratio (DMER) indices. Results revealed that the intercropping patterns that provided wider spacings for the component crops and reduced the competition between them, mainly IP3, resulted in the best performances for the two crops. This was clear for maize ear and grain yields, 100-grain weight and harvest index, in addition to cowpea fresh and dry forage yields, crude protein and non-fiber carbohydrates of the three cuts. Regarding the applied N schedules, NS1 which included the application of a N starter dose with sowing proved to be the most efficient schedule that led to the best performance for both crops. Maize produced 9.07 t ha−1 grain yield under IP3 and NS1. In addition, the application of IP3 resulted in the highest significant cowpea dry forage yield (DFY), with the highest crude protein (CP) content. The DFY of cuts 1, 2, and 3 amounted to 1.27, 0.45, and 0.24 t ha−1, while the CP content for the three respective cuts reached 159.49, 157.96, and 148.91 g kg−1. Nonetheless, NS1 produced a reasonable amount of DFY with high CP content. It is recommended to follow the third proposed intercropping pattern (IP3) and to include a nitrogen starter dose (NS1) in the fertilization scheme to ensure highest productivity from the intercropped maize and forage cowpea.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3