Influence of EMR–Phosphogypsum–Biochar Mixtures on Sudan Grass: Growth Dynamics and Heavy Metal Immobilization

Author:

Luo Yang1,Liu Fang2,Luo Xuqiang1ORCID,Ren Jun1,Guo Jinmei1,Zhang Jinxin3

Affiliation:

1. School of Geography and Resources, Guizhou Education University, Guiyang 550018, China

2. College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China

3. Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry/Grassland Research Center, National Forestry and Grassland Administration, Beijing 100091, China

Abstract

This study investigates the growth dynamics and heavy metal immobilization in Sudan grass cultivated on substrates composed of electrolytic manganese residue (EMR), phosphogypsum, and chili straw biochar. Pot experiments revealed that a substrate with phosphogypsum constituting 75% of the mix hinders Sudan grass seed germination. Compared with sole EMR utilization, the composite substrates notably enhanced plant growth, evidenced by increases in plant height and fresh weight. The integration of these substrates led to a significant elevation in total chlorophyll content (up to 54.39%) and a reduction in malondialdehyde (MDA) levels (up to 21.66%), indicating improved photosynthetic activity and lower oxidative stress. The addition of biochar reduced the content of Zn, Cd, and Mn in the roots of Sudan grass by up to 25.92%, 20.00%, and 43.17%, respectively; and reduced the content of Pb, Mn, and Cr in the shoot by up to 33.72%, 17.53%, and 26.32%, respectively. Fuzzy membership function analysis identified the optimal substrate composition as 75% EMR and 25% phosphogypsum, with 5% chili straw biochar, based on overall performance metrics. This study adopts the concept of “to treat waste with waste”. The approach is to fully consider the fertility characteristics of EMR, phosphogypsum, and biochar, underscoring the potential for utilizing waste-derived materials in cultivating Sudan grass and offering a sustainable approach to plant growth and heavy metal management.

Funder

National Natural Science Foundation of China

Higher Education Institution Scientific Research Project of Guizhou Province Education Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3