Temporal and Spatial Dynamics of Carbon Storage in Qinghai Grasslands

Author:

Huang XiaotaoORCID,Yao Buqing,Liu Xiang,Chen Chunbo

Abstract

Accurate quantification of ecosystem carbon storage dynamics is very important in regional ecological management. However, the dynamics of grassland carbon storage in Qinghai, China, are still unexplored. We investigated the temporal and spatial dynamics of carbon storage in the Qinghai grasslands from 1979 to 2018, using the spatially explicit Biome-BGCMuSo model. The average annual value of vegetation carbon density (VCD) was 52.71 gC·m−2. After 2000, VCD showed an overall increasing trend, with an average rate of 2.14 gC·m−2. The VCD was relatively high in the eastern and southeastern regions of Qinghai compared with that in the western and central areas. The increasing trend in VCD was mainly observed in the eastern and southeastern regions, while a decreasing trend was evident in western and central Qinghai. Annual soil organic carbon density (SOCD) in Qinghai grasslands generally increased from 1979 to 2018. After 2001, the SOCD increased by an average rate of 7.07 gC·m−2. The SOCD was relatively high in eastern and southeastern Qinghai compared with that in western and central Qinghai. The pronounced increasing trend of SOCD was mainly distributed in the southeast and northeast parts of Qinghai, while the decreasing trend was mainly distributed in the area between southeast and northeast Qinghai, and in the central and western regions. This study deepened our understanding of carbon dynamics in the Qinghai grasslands and provided data for guiding the ecological restoration and carbon management of local grasslands.

Funder

State Key Laboratory of Desert and Oasis Ecology

the Chinese Academy of Science (CAS) “Light of West China” Program (2018), “The effect of grazing on grassland productivity in the basin of Qinghai Lake”

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3