Abstract
Increased soil salinity significantly inhibits crop production worldwide, and biochar may alleviate salt stress. In the present study, the application of biochar significantly increased the biomass of rice under salt stress treatment. The analysis of soil properties demonstrated that biochar application significantly decreased electrical conductivity and soluble Na+ and Cl− contents in the soil under salt stress. In addition, biochar application increased the soil cation exchange capacity, soil organic matter, humic acid, total nitrogen, and total phosphorus contents in the soil, suggesting that biochar improved the soil nutrient conditions. The application of biochar further increased the abundance of soil bacteria and changed the bacterial community structure under salt stress. Proteobacteria, Chloroflexi, and Acidobacteria were the top three phyla in bacterial abundance. Biochar increased Proteobacteria abundance and decreased Chloroflexi abundance, which were considered to be eutrophic bacteria and oligotrophic bacteria, respectively. Redundancy analysis showed that soil bacterial communities were mainly affected by soil pH and EC (p < 0.05). In conclusion, the application of biochar alleviated salt stress in rice via modifying soil properties and regulating the bacterial abundance and community structure.
Funder
National Natural Science Foundation of China
Subject
Agronomy and Crop Science
Reference45 articles.
1. Mechanisms of Salinity Tolerance
2. Spatial-temporal variation characteristics of water-salt movement in coastal saline soil improved by flooding and subsurface drainage;Zhang;Trans. Chin. Soc. Agric. Eng. Trans. CSAE,2018
3. Comparison of the effects of different maize straw returning methods on saline soil improvement;Cai;E3S Web Conf.,2019
4. Optimization of nitrogen fertilizer management for improving rice grain yield and nutrient accumulation and mobilization in saline‐alkaline soils
5. Influence of biochar on soil physical and chemical properties and crop yields in rainfed field;Fang;Ecol. Environ. Sci.,2014
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献