Novel Loci for Kernel Hardness Appeared as a Response to Heat and Combined Heat-Drought Conditions in Wheat Harboring Aegilops tauschii Diversity

Author:

Elhadi Gamila Mohamed IdrisORCID,Kamal Nasrein Mohamed,Gorafi Yasir Serag Alnor,Yamasaki Yuji,Ban Yusuke,Kato KeitaORCID,Tahir Izzat Sidahmed AliORCID,Ishii TakayoshiORCID,Tanaka Hiroyuki,Tsujimoto Hisashi

Abstract

Kernel hardness influences the milling and baking quality of wheat. Stress environments such as heat and combined heat-drought can produce harder kernels, thereby affecting the overall wheat quality. Beside puroindoline genes that are known to determine hardness, other QTLs contribute to the hardness. These QTLs, especially under stress conditions, need extensive research. Moreover, understanding the modification or stabilization of hardness under stress condition and the relationship with stress tolerance will facilitate the selection of superior lines that maintain both high yield and quality even under the stress environment. Therefore, in the current work, we aimed to identify the genetic loci and marker trait associations (MTAs) that contributes for hardness under optimum conditions in Japan, and heat and combined heat-drought (HD) conditions in Sudan. We used a panel of multiple synthetic derivatives (MSD) having diverse Aegilops tauschii genome segments and investigated the association between hardness stabilization and stress tolerance. Under stress conditions, we observed that less reduction of kernel weight is associated with either low change or stable kernel hardness. We identified 47 markers associated with hardness under all conditions; the D genome was the main contributor. For the first time, we found a significant association with hardness under stress conditions on chromosome 4D. We dissected several candidate genes associated with the change of hardness under stress conditions. Our results will improve the understanding of the genetic factors that affect wheat hardness stability.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3