Assessment of Germination Response to Salinity Stress in Castor through the Hydrotime Model

Author:

Cafaro Valeria1ORCID,Alexopoulou Efthymia2ORCID,Cosentino Salvatore Luciano1ORCID,Patanè Cristina3ORCID

Affiliation:

1. Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy

2. Centre for Renewable Energy Sources and Saving, 19th km Marathonos Avenue, 19009 Pikermi, Greece

3. CNR-Istituto per la BioEconomia (IBE), Sede Secondaria di Catania, Via P. Gaifami 18, 95126 Catania, Italy

Abstract

Germination of castor seeds from five dwarf hybrid genotypes, compared to a ‘Local’ genotype selected by the University of Catania from a Tunisian population well adapted to the Mediterranean environment, was studied at five different salt levels (0, −0.3, −0.6, −0.9, and −1.2 MPa) in order to assess seed germination performance under stress conditions. The results confirmed that optimum moisture (0 MPa) ensured 100% of germination; on the contrary, salt concentration negatively influenced the final germination percentage (FGP) and radicle elongation, causing severe consequences for plant establishment. At a level of −1.2 MPa, no germination occurred, while a level of −0.3 MPa slightly affected the seed germination of the dwarf genotypes, which achieved 77.3% of germination, contrary to the ‘Local’ genotype, in which germination was kept stable. Higher levels of salt (−0.6 and −0.9 MPa) caused a linear decrease in FGP and radicle elongation. Overall, the dwarf hybrid ‘C1019’ performed better at higher salt impositions, as did ‘C857’, confirming these genotypes were the most tolerant among the dwarf hybrids. Conversely, ‘C1013’ turned out to be the most susceptible genotype, followed by ‘C1008’. On the other hand, the ‘Local’ castor genotype was the best-performing genotype at −0.3 MPa and the most tolerant genotype in terms of salt concentration and germination time, which were accurately predicted by the hydrotime model, validating it as a valid method of assessing the germination response of castor seeds to Ψ.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3