Comparative Study of Photosynthesis Performance of Herbicide-Treated Young Triticale Plants during Drought and Waterlogging Stress

Author:

Todorova Dessislava1,Aleksandrov Vladimir1ORCID,Anev Svetoslav2ORCID,Sergiev Iskren1ORCID

Affiliation:

1. Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria

2. Department Dendrology, Faculty of Forestry, University of Forestry, 10 Sveti Kliment Ohridski Blvd., 1756 Sofia, Bulgaria

Abstract

Owing to global climate changes, periods of soil drought or waterlogging occur. Each of these factors causes negative effects on plant physiological processes and growth. Weeds are another factor that limits plant productivity. The main task of this study is to investigate the physiological reactions of triticale to herbicide treatment and subsequent drought or waterlogging. Young triticale plants were treated with Serrate® (selective herbicide produced by Syngenta) and exposed for 7 days to drought or waterlogging. Plant growth, chlorophyll and carotenoids content, the net photosynthesis rate and chlorophyll a fluorescence were measured during the stress period and after 4 days of plant recovery. Herbicide by itself did not induce considerable changes in the abovementioned parameters during the stress period. Serrate® did not affect strongly the efficiency of the photosynthetic machinery under harsh conditions. A significant reduction in fresh weight (85%), water content (93%), net photosynthesis rate, chlorophyll a fluorescence indices Fv/Fm and Fv/F0, and leaf pigments (58% for chlorophyll a, 53% for chlorophyll b, and 45% for carotenoids) was found because of drought. Waterlogging also influenced negatively these parameters but to a smaller extent. After resuming the normal irrigation, the photosynthesis and chlorophyll a fluorescence tended to increase and showed signs of recovery. The comparative analysis of growth and photosynthetic parameters demonstrated that triticale plants subjected to waterlogging could recover to a higher degree than those exposed to drought.

Funder

Bulgarian National Scientific Fund

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3