Estimation of Genetic Parameters and Identification of Leaf Blast-Resistant Rice RILs Using Cluster Analysis and MGIDI

Author:

Jalalifar Reza1,Sabouri Atefeh1ORCID,Mousanejad Sedigheh2,Dadras Ahmad Reza3ORCID

Affiliation:

1. Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Rasht 41996-13776, Iran

2. Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 41996-13776, Iran

3. Crop and Horticultural Science Research Department, Zanjan Agricultural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Zanjan 31359-33151, Iran

Abstract

Rice blast disease, caused by the fungus Magnaporthe oryzae, poses a significant threat to rice cultivation. One effective way to deal with this disease is to identify and introduce resistant varieties using different breeding methods. This study utilized a population of 153 recombinant inbred lines (RILs) derived from the crossing of the Shahpasand (SH) and IR28 varieties, characterized by susceptibility and resistance to leaf blast, respectively. In combination with 12 control varieties, these genotypes were subjected to an extensive evaluation of disease severity (5 stages), the area under the disease progress curve (AUDPC), type, and the infection rate in 2021 and 2022. Analysis of variance revealed significant genetic variation, highlighting the potential of the RIL population for identifying and selecting resistant lines. Employing cluster analysis and the multi-trait genotype-ideotype distance index (MGIDI), 17 lines were identified as the most resistant over a two-year evaluation period. The average AUDPC for these resistant lines was estimated at 2.435 ± 0.114, and lines 17 and 111 had the lowest AUDPC (1.526 and 1.630, respectively) and showed the least infection in two years. Conversely, lines 42 and 43 showed the highest AUDPC values (255.312 and 248.209) along with heightened sensitivity. The use of MGIDI yielded a substantial selection differential (SD) of −59.12% for traits related to leaf blast disease resistance, demonstrating the effectiveness of this method. Furthermore, new recombinant populations are expected to be developed in future plant breeding projects by crossing the most susceptible and resistant lines, which will be new sources of resistance to this disease.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3