Extreme Weather and Grazing Management Influence Soil Carbon and Compaction

Author:

Subedi Anish,Franklin Dorcas,Cabrera Miguel,Dahal SubashORCID,Hancock Dennis,McPherson Amanda,Stewart Lawton

Abstract

Understanding the influence of cattle grazing on soil carbon and bulk density during extreme dry to wet periods can help us design more resilient and sustainable grazing systems for low-input management scenarios. A study was conducted to evaluate changes in loss-on-ignition (LOI) carbon and bulk density (BD) in the top 20 cm soil layer when eight continuous grazing (CG) pastures were converted to either continuous grazing with hay distribution (CHD-4) or strategic grazing (STR-4). STR included lure management of cattle with movable-equipages, exclusion and over-seeding erosion-vulnerable areas, and a relaxed rotational grazing. Changes in relationships between cattle density (CD), LOI, and BD were evaluated for change in grazing management from 2015 to 2018. Reduction in LOI carbon (0–5, 5–10, 10–20 cm) and BD (5–10 cm) were observed in both CHD and STR pastures in 2018. CD in 2015 had either no relationship or a negative relationship on LOI while in 2018, CD positively influenced LOI in CHD (0–5 cm) and STR (0–5 and 5–10 cm) pastures. STR had lower BD with higher CD further away from concentrated flow paths mirroring cattle movement. Exclusions in the STR pastures had the greatest reduction in BD. Even with reduced carbon in the 0–5 cm soil layer the reduction in BD in the 5–10 cm soil layer helped build resilience in grazing systems that experience extreme weather events such as going from very dry to extensively wet.

Funder

Natural Resources Conservation Service

USDA Natural Resource Conservation Service Innovation Grant

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3