Evaluation of Morpho-Physiological Traits in Rice Genotypes for Adaptation under Irrigated and Water-Limited Environments

Author:

Gaballah Mahmoud M.ORCID,Ghoneim Adel M.ORCID,Rehman Hafeez UrORCID,Shehab Mohamed M.,Ghazy Mohamed I.,El-Iraqi Ahmed S.,Mohamed Abdelwahed E.,Waqas MuhammadORCID,Shamsudin Noraziyah Abd AzizORCID,Chen Yaning

Abstract

Drought is one of the major limitations to rice productivity worldwide. The present study compared variation in seventeen rice genotypes of Egyptian origin for morpho-physiological traits to identify the best genotypes with combination of adaptive traits under water-limited condition (DS). The DS reduced days to heading (DTH), plant height (PH), flag leaf angle (FLA), flag leaf area (FLAR), chlorophyll content (CHC), relative water content (RWC), grain yield (GY), and its components. Among genotypes, Hybrid 2 expressed the highest GY, panicle length (PL), number of tillers (NT), panicles per plant (NPP), and harvest index (HI) with maximum spikelet sterility (SS) under non-stress condition (NS), while the same genotype expressed ≈ 41% yield reduction under DS. The genotype Giza 179 had earlier DTH, higher and stable GY, FLAR, and yield component traits such as NPP, PW, and HI across the water regimes with least yield reduction (30.5%) under DS. The GY and FLAR, RWC, PL, NT, NPP, PW, and HI were positively correlated under DS. The cluster analysis showed a similarity index of 25% among genotypes. The high yielding genotypes Giza 179, IET 1444, and IRAT 170 had also increased yield components (PL, NT, NPP, PW, TGW and HI) under DS that were attributed to highest FLAR, RWC, and PH, while having reduced LR, FLA, TR, and SS; therefore, these genotypes were categorized as drought-tolerant. The Hybrid 2 and Giza 179 genotypes can perform well under NS; however, the cultivation of Giza 179, Sakha 107, IET 1444, and IRAT 170 would give an advantage in DS-prone areas, hence, these can be used as a donor parental line in future rice breeding programs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3