The Modulation of Auxin-Responsive Genes, Phytohormone Profile, and Metabolomic Signature in Leaves of Tomato Cuttings Is Specifically Modulated by Different Protein Hydrolysates

Author:

Buffagni Valentina,Ceccarelli Angela Valentina,Pii YouryORCID,Miras-Moreno Begoña,Rouphael YoussefORCID,Cardarelli MariateresaORCID,Colla GiuseppeORCID,Lucini LuigiORCID

Abstract

Protein hydrolysates (PHs) are employed in agriculture to increase the sustainability of farming systems, with positive results on crop productivity and response against environmental stressors. Nevertheless, the molecular mechanism(s) triggered by their specific activity is not clearly understood. In this work, five PHs obtained by enzymatic hydrolysis of different vegetal protein sources were tested for their root-promoting activity on tomato cuttings. All the treatments improved both root length and number when compared to negative controls. Distinctive metabolomic signatures were highlighted in response to treatments, indicating the triggering of different molecular processes in leaf tissues of tomato cuttings. PHs differentially modulated the biosynthesis of plant stress-protectants, such as alkaloids and phenylpropanoids. Moreover, metabolites involved in phytohormone biosynthesis were significantly impacted. In this context, a clear modulation of several compounds related to auxin homeostasis was observed. In addition, the differential modulation of SlIAA2 and SlIAA9 genes, which are involved in the IAA signalling pathway, might further suggest the auxin-like activity elicited by the PHs tested. Here we provide evidence that PHs can impact plant molecular level, positively affecting root development, most likely by affecting the signalling cascades activated in leaf tissues. The biostimulant activity was sustained by PH-specific response at the molecular level, likely ascribable to their heterogeneous botanical origins. In fact, our findings did not point out a clear universal response to PHs, and specific effects are to be investigated.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3