Highly Dispersed Blast-Furnace Sludge as a New Micronutrient Fertilizer: Promising Results on Rapeseed

Author:

Zakharova Olga V.,Baranchikov Peter A.,Grodetskaya Tatiana A.ORCID,Kuznetsov Denis V.,Gusev Alexander A.ORCID

Abstract

Due to the growing population of Earth, the problem of providing food comes to the fore. Therefore, the search for new, economically available sources of trace elements for crop production is relevant. One of these potential sources is blast-furnace sludge: highly dispersed metallurgical waste, the industrial processing of which is difficult due to its high zinc content. We studied the effect of blast-furnace sludge on rapeseed plants in laboratory, greenhouse, and field experiments and also assessed the accumulation of sludge components in plant organs. The studied sludge sample consisted of micron and submicron particles containing compounds of iron, silicon, aluminum, zinc, calcium, and sulfur. Used concentrations: laboratory—0.01, 0.1, 1%, 10, and 100 g L−1; greenhouse—0.01, 0.1, 1, 10, and 100 g kg−1; field—0.5, 2, and 4 t ha−1. During a laboratory experiment, a decrease in the germination of rapeseed seeds exposed to 0.01, 0.1, 10, and 100 g L−1 waste was observed, but 1 g L−1 promoted the increase of this indicator by 7% regarding control (0 g L−1). While inhibiting seed germination, the sludge had a beneficial effect on the vegetative performance of plants. Reverse effects were noted in the greenhouse experiment as an increase in seed germination (introduction of 1 g kg−1 of sludge to the substrate caused maximum stimulation) and a decrease in rapeseed morphometric parameters were observed. However, at a concentration of 10 g kg−1, the root mass increased by 43% and the stem mass by 63%. In the same group, the highest content of chlorophylls was noted. The number of pods in all experimental groups of plants was less than in control (0 g kg−1) plants, but at the same time, in the variants of 0.01 and 1 g kg−1, the weight of seeds was noticeably increased, by 15.6 and 50%, respectively. Under the conditions of the field experiment, the sludge had a positive effect on the indicators of biological and economic productivity. Thus, exposure to 0.5 and 2 t ha−1 of sludge significantly increased the dry matter and leaf area. The highest values of photosynthetic capacity were recorded at a dose of 2 t ha−1. The maximum increase in yield was ensured by the introduction of sludge at a concentration of 0.5 and 2 t ha−1. The sludge dose of 4 t ha−1, which was also used, either had no effect or suppressed the development of the analyzed traits. The study of the accumulation of zinc and iron in the organs of plants showed the absence of a pronounced dose-dependent accumulation of zinc in the organs of rapeseed, while for iron, an increase in the content of the element in the organs of plants associated with an increase in the concentration of sludge in the soil was recorded. Our results demonstrate the promise of further research and development of methods for the agricultural use of highly dispersed sludge from wet gas cleaning of blast furnace production.

Funder

Ministry of Science and Higher Education of the Russian Federation

Strategic Academic Leadership Program "Priority 2030", NUST “MISIS”

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference87 articles.

1. Soil and the intensification of agriculture for global food security;Environ. Int.,2019

2. The future of farming: Who will produce our food?;Food Secur.,2021

3. FAO (2017). The Future of Food and Agriculture—Trends and Challenges, FAO.

4. Wiśniewska, A., Saeid, A., and Chojnacka, K. (2018). Recent Advances in Trace Elements, Wiley-Blackwell.

5. Plant availability of an iron waste product utilized as an agricultural fertilizer on calcareous soil;J. Plant Nutr.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3