Transcriptome and Flavonoid Compounds Metabolome Analyses Reveal the Mechanisms of Heat Stress in Rhododendron with Exogenously Applied Calcium

Author:

Shen Jianshuang1,Rong Xianlin1,Li Xueqin2,Ma Yulei3,Cheng Hefeng2,Sheng Jiaran2,Huang Lu1,Jin Songheng2ORCID

Affiliation:

1. Hangzhou Vocational & Technical College, Hangzhou 310018, China

2. Jiyang College, Zhejiang A&F University, Zhuji 311800, China

3. Ningbo City College of Vocational Technology, Ningbo 315100, China

Abstract

Rhododendron plants have ornamental, commercial, and medicinal value to people. Flavonoids are one of the components used in traditional remedies, and Rhododendron plants are found to be rich in flavonoids. Flavonoids can reduce the risk of human disease and participate in the regulation of antioxidant defense systems in response to heat stress. Rhododendron prefers cold climates, so the relatively high temperatures of cities affect the extraction of medicinal ingredients and limit the cultivation environment. Recent studies found that the exogenous application of calcium acts to alleviate heat stress in Rhododendron plants. This study explores the mechanism by which exogenous calcium alleviates heat stress and the role of flavonoids in regulating the antioxidative system in Rhododendron × pulchrum Sweet using combined transcriptomic and metabolomic methods. The activities of peroxidase, catalase and superoxide enzymes were found to increase in response to heat stress and external CaCl2 in the leaves of R. × pulchrum. In total, 433 metabolic components and 370 DEGs were identified as being differentially expressed in response to heat stress and external calcium chloride (CaCl2) in the leaves of R. × pulchrum. These results illustrate that heat stress induces oxidative stress and that external CaCl2 can enhance the heat tolerance of Rhododendron. Flavonoid compounds are responsible for the antioxidant scavenging of reactive oxygen species in R. × pulchrum leaves exposed to heat stress and external calcium.

Funder

the National Natural Science Foundation of China

the National Key Research and Development Project

Zhejiang Provincial Natural Science Foundation of China

Research Foundation for Advanced Talents of Hangzhou Vocational & Technical College

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3