Identification and Analysis of SOD Family Genes in Peanut (Arachis hypogaea L.) and Their Potential Roles in Stress Responses

Author:

Yu Shutao12,Wang Chuantang13ORCID,Wang Qi3,Sun Quanxi3ORCID,Zhang Yu12,Dong Jingchao2,Yin Yechao2,Zhang Shihang2,Yu Guoqing2

Affiliation:

1. College of Agronomy, Shenyang Agricultural University, Shenyang 110161, China

2. Institute of Sandy Land Management and Utilization of Liaoning, Fuxin 123000, China

3. Shandong Peanut Research Institute, Qingdao 266100, China

Abstract

Superoxide dismutases (SODs) are crucial in safeguarding plants against reactive oxygen species (ROS) toxicity caused by abiotic or biotic factors. Although recent research has revealed the involvement of the SOD gene family in plant biological processes, the understanding of the SOD gene family in peanut remains inadequate. This study comprehensively characterizes the SOD gene family in the peanut genome. A total of 25 AhSOD genes were identified and subsequently categorized into three subfamilies: sixteen AhCSDs, six AhFSDs, and three AhMSDs according to the phylogenetic tree. A comprehensive analysis revealed that the AhSOD genes underwent segmental duplications. The majority of AhSOD genes exhibited conserved exon–intron and motif structures within the same subfamily. The examination of cis-acting elements within the promoter regions of SOD genes revealed that the expression of AhSOD was subject to regulation by plant hormones, as well as responses to defense and stress. RNA-seq analysis showed expression diversity of AhSOD genes in various tissues and cold, drought, and salt stresses. Furthermore, the regulation of AhSOD gene expression is anticipated to involve numerous transcription factors. The gene ontology annotation results validate the role of AhSOD genes in various stress stimuli, SOD activity, reactive oxygen species metabolic processes, and cellular oxidant detoxification processes. This investigation serves as the initial genome-wide analysis of the AhSOD gene family, providing a basis for comprehending the function of the AhSOD gene family and enhancing plant tolerance to cold, drought, and salt stresses.

Funder

China Agriculture Research System of MOF and MARA

Liaoning BaiQianWan Talents Program

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3