Automated Counting of Tobacco Plants Using Multispectral UAV Data

Author:

Lin Hong1ORCID,Chen Zhuqun1ORCID,Qiang Zhenping1ORCID,Tang Su-Kit2ORCID,Liu Lin3ORCID,Pau Giovanni45ORCID

Affiliation:

1. College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650224, China

2. Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR 999078, China

3. College of Tobacco Science, Yunnan Agricultural University, Kunming 650500, China

4. Department of Computer Science, University of Bologna, 40126 Bologna, Italy

5. Samueli Computer Science Department, University of California, Los Angeles, CA 90095, USA

Abstract

Plant counting is an important part in precision agriculture (PA). The Unmanned Aerial Vehicle (UAV) becomes popular in agriculture because it can capture data with higher spatiotemporal resolution. When it is equipped with multispectral sensors, more meaningful multispectral data is obtained for plants’ analysis. After tobacco seedlings are raised, they are transplanted into the field. The counting of tobacco plant stands in the field is important for monitoring the transplant survival rate, growth situation, and yield estimation. In this work, we adopt the object detection (OD) method of deep learning to automatically count the plants with multispectral images. For utilizing the advanced YOLOv8 network, we modified the architecture of the network to adapt to the different band combinations and conducted extensive data pre-processing work. The Red + Green + NIR combination obtains the best detection results, which reveal that using a specific band or band combinations can obtain better results than using the traditional RGB images. For making our method more practical, we designed an algorithm that can handling the image of a whole plot, which is required to be watched. The counting accuracy is as high as 99.53%. The UAV, multispectral data combined with the powerful deep learning methods show promising prospective in PA.

Funder

Natural Science Foundation of China

Yunnan Fundamental Research Program of Agricultural spacial Projects

Fundamental Research Projects of Yunnan Provincial Department of Education

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3