Foliar Application of a Tagatose-Based Product Reduces Downy Mildew Symptoms through Induction of Grapevine Resistance and Anti-Oomycete Action

Author:

Mijailovic Nikola,Nesler AndreaORCID,Perazzolli MicheleORCID,Aziz AzizORCID,Essaïd Ait BarkaORCID

Abstract

Downy mildew caused by the oomycete Plasmopara viticola represents one of the most devastating diseases in vineyards. Current ways to control this disease rely mainly on fungicide applications, but agro-ecological concerns have raised interest in sustainable alternative methods. Certain rare sugars, like D-tagatose, have shown efficacy in reducing various plant diseases, including grapevine downy mildew. However, the mechanism of action of D-tagatose against grapevine downy mildew is not understood. The aim of this study was to characterize the efficacy and mechanism of action of a D-tagatose-based formulated product (IFP48) against grapevine downy mildew and compare it with the correspondent active molecule, pure D-tagatose (TAG). Whereas IFP48 root treatment provided scarce protection, the leaf treatment was the most efficient, especially at the dosage of 5 g/L. In particular, IFP48 treatment directly inhibited P. viticola sporangia germination, upregulated the expression of defense-related genes, and increased the content of stilbene phytoalexins. Conversely, the expression of defense-related genes and the content of stilbene phytoalexins were only slightly affected by TAG, suggesting that the formulation possibly improved D-tagatose effects against downy mildew in grapevine.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference81 articles.

1. Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard

2. Plasmopara viticola: A review of knowledge on downy mildew of grapevine and effective disease management;Gessler;Phytopathol. Mediterr.,2011

3. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture

4. A survey of plant defense responses to pathogens;Hammerschmidt,1999

5. SYSTEMIC ACQUIRED RESISTANCE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3