Variation in Soil Hydrothermal after 29-Year Straw Return in Northeast China during the Freeze–Thaw Process

Author:

Li Haiyu1,Li Meng2,Wang Shuli1,Gao Ming1

Affiliation:

1. School of Forestry, Northeast Forestry University, Harbin 150040, China

2. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China

Abstract

In seasonal agricultural frozen soil areas, the straw return may influence the freeze–thaw characteristics by changing the soil organic matter and porosity. Monitoring moisture and heat in the freeze–thaw period is significant for preventing spring waterlogging and reasonable planting arrangements. However, the effect of long-term straw return on the soil freeze–thaw process is still unclear. In this study, we investigated the dynamics of soil temperature (ST) and soil moisture (SM) between straw-return cropland (SF) for 29 consecutive years and no-fertilization cropland (NF) during freeze–thaw progress in northeast China. The soil in both sites underwent unidirectional freezing and bidirectional thawing processes. The soil freezing and thawing dates in the NF of the profile occurred earlier than that in the SF. The NF had higher frozen depth and freezing rate than the SF and exhibited a larger range of ST variation and higher heat transmission efficiency. The SM showed a declining trend before the ST started to decrease to a freezing point at different depths in both sites. The migrated SM in most soil layers decreased during monitoring. The relationship between SM and negative ST was a power function at different frozen depths. The SM decreased rapidly in the range of −2–0 °C in both sites. During phase changes, the SF and NF consumed 33.0 and 43.6 MJ m−2, respectively. The results can partially explain the response of straw return to soil hydrothermal variation during the freeze-thaw process. This study may provide an integral theory for effectively utilizing agricultural soil hydrothermal resource in northeast China.

Funder

National Key Research and Development Program

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3