Abstract
To discover new acetyl-CoA carboxylase (ACCase) inhibiting-based herbicides, twenty-nine novel quinazolin-4(3H)-one derivatives were designed and synthesized based on the aryloxyphenoxypropionate motif. The bioassay results showed that most of the target compounds showed better pre-emergent herbicidal activity against monocotyledonous weeds in a greenhouse. Especially, when applied at 375 g ha−1 under pre-emergence conditions, compound QPP-7 displayed excellent herbicidal activity against monocotyledonous weeds (i.e., E. crusgalli, D. sanguinalis, P. alopecuroides, S. viridis, E. indica, A. fatua, E. dahuricu, S. alterniflora) with inhibition rate >90%, and displayed excellent crop safety to O. sativa, T. aestivum, G. spp, and A. hypogaea. The study of structure-activity relationship (SAR) revealed that the herbicidal activity of target compounds is strongly influenced by the spatial position of R group and the bulk of R1 group on quinazolin-4(3H)-one, and the (R = 6-F, R1 = Me) pattern is confirmed as the optimal orientation. Furthermore, the molecular docking study and the good inhibitory activity of QPP-7 against E. crusgalli ACCase enzyme (IC50 = 54.65 nM) indicated that it may be a ACCase inhibitor. Taken together, the present work demonstrated that compound QPP-7 could serve as a potential lead structure for further developing novel ACCase inhibiting-based herbicide.
Funder
the China Postdoctoral Science Foundation
National Natural Science Foundation of China
National Key Research and Development Program of China
Natural Science Foundation of Shandong Province
Subject
Agronomy and Crop Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献