Yield Gap Analysis of Alfalfa Grown under Rainfed Condition in Kansas

Author:

Baral RudraORCID,Bhandari KamalORCID,Kumar RakeshORCID,Min DoohongORCID

Abstract

The yield and production of alfalfa (Medicago sativa L.) have not been significantly improved in Kansas for the last 30 years even though farmers are using improved varieties. We have noted a significant yield difference between average alfalfa yield reported by farmers and researchers. The magnitude of yield gap in Kansas and its underlying factors are still unknown. Thus, understanding of potential yield is essential to meet the future forage demand with the limited production resources. The main objective of this study was, therefore, to quantify the current yield gap and identify the main yield-limiting factor for rainfed alfalfa grown in Kansas. To achieve this objective, we selected 24 counties in Kansas based on the rainfed production area and total production, and used county-level yield, daily temperature, and rainfall data from the past 30 yrs (1988–2017) of those selected counties. We applied four statistical approaches: (i) probability distribution function to delineate county-level alfalfa growing season, (ii) stochastic frontier yield function to estimate optimum growing season rainfall (GSR) and attainable yield, (iii) linear boundary function to estimate minimum water loss, water use efficiency, and water-limited potential yield, and (iv) conditional inference tree to identify the major yield contributing weather variables. The probability distribution function delineated the alfalfa growing season starting from mid-March to mid-November in Kansas. The frontier model estimated the attainable yield of 9.2 Mg ha−1 at an optimum GSR of 664 mm, generating a current yield gap of 18%. The linear boundary function estimated the water-limited potential yield of 15.5 Mg ha−1 at an existing GSR of 624 mm, generating a yield gap of 50%. The conditional inference tree revealed that 24% of the variation in rainfed alfalfa yield in Kansas was explained by weather variables, mainly due to GSR followed minimum temperature. However, we found only 7% GSR deficit in the study area, indicating that GSR is not the only cause for such a wide yield gap. Thus, further investigation of other yield-limiting management factors is essential to minimize the current yield gap. The statistical models used in this study might be particularly useful when yield estimation using remote sensing and crop simulation models are not applicable in terms of time, resources, facilities, and investments.

Funder

United States Department of Agriculture, National Institute of Food and Agriculture (USDA-NIFA) Competitive

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3