Toxicity and Preventive Activity of Chitosan, Equisetum arvense, Lecithin and Salix Cortex against Plasmopara viticola, the Causal Agent of Downy Mildew in Grapevine

Author:

Llamazares De Miguel DiegoORCID,Mena-Petite Amaia,Díez-Navajas Ana María

Abstract

Grapevine, a crop of global economic importance, is annually affected by diseases that can compromise the quality and quantity of the harvest, producing large economic losses. Downy mildew caused by Plasmopara viticola (Berk. & M.A. Curtis) Berl. & de Toni is one of the most important diseases in the vineyard. To fight this pathogen, winegrowers often rely on conventional chemical fungicides or copper-based formulations, whose use is determined to be reduced by the European Commission due to their environmental consequences. Hence, alternative plant protection products (PPP) in grapevine must be considered and studied. In this context, we selected several alternative commercial products, based on basic substances (BS) or low-risk active substances (LRAS), to evaluate their suitability to deal with P. viticola. We measured the preventive activity of the products, both in vitro and in planta, as well as their toxicity against the sporangia and zoospores of the pathogen. Results showed that four commercial products were effective against the pathogen directly and preventively, being composed of approved basic substances, more concretely, chitosan, Equisetum arvense, lecithins, and Salix cortex. Among those, the products composed of lecithins and Salix cortex were the most toxic and active preventively. Therefore, these basic substances should be promoted in the vineyard as an alternative to conventional treatments in order to transition to a more sustainable viticulture.

Funder

Basque Government

University of the Basque Country

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference77 articles.

1. International Organisation of Vine and Wine (2022). State of the World Vine and Wine Sector 2021, International Organisation of Vine and Wine.

2. Contamination of Vineyard Soils with Fungicides: A Review of Environmental and Toxicological Aspects;Bordas;Environ. Int.,2010

3. Thind, T.S. (2012). Fungicide Resistance in Crop Protection: Risk and Management, CABI.

4. Massi, F., Torriani, S.F.F., Borghi, L., and Toffolatti, S.L. (2021). Fungicide Resistance Evolution and Detection in Plant Pathogens: Plasmopara viticola as a Case Study. Microorganisms, 9.

5. Commission Implementing Regulation (EU) (2018). Commission Implementing Regulation (EU) 2018/1981 of 13 December 2018 Renewing the Approval of the Active Substances Copper Compounds, as Candidates for Substitution, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (EU) No 540/2011. Off. J. Eur. Union, 317, 16–20.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3