Evaluation of Hyperspectral Monitoring Model for Aboveground Dry Biomass of Winter Wheat by Using Multiple Factors

Author:

Yang Chenbo1,Xu Jing1,Feng Meichen1ORCID,Bai Juan1,Sun Hui1,Song Lifang1,Wang Chao1,Yang Wude1,Xiao Lujie1,Zhang Meijun1,Song Xiaoyan1

Affiliation:

1. College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China

Abstract

The aboveground dry biomass (AGDB) of winter wheat can reflect the growth and development of winter wheat. The rapid monitoring of AGDB by using hyperspectral technology is of great significance for obtaining the growth and development status of winter wheat in real time and promoting yield increase. This study analyzed the changes of AGDB based on a winter wheat irrigation experiment. At the same time, the AGDB and canopy hyperspectral reflectance of winter wheat were obtained. The effect of spectral preprocessing algorithms such as reciprocal logarithm (Lg), multiple scattering correction (MSC), standardized normal variate (SNV), first derivative (FD), and second derivative (SD); sample division methods such as the concentration gradient method (CG), the Kennard–Stone method (KS), and the sample subset partition based on the joint X–Y distances method (SPXY); sample division ratios such as 1:1 (Ratio1), 3:2 (Ratio2), 2:1 (Ratio3), 5:2 (Ratio4), and 3:1 (Ratio5); dimension reduction algorithms such as uninformative variable elimination (UVE); and modeling algorithms such as partial least-squares regression (PLSR), stepwise multiple linear regression (SMLR), artificial neural network (ANN), and support vector machine (SVM) on the hyperspectral monitoring model of winter wheat AGDB was studied. The results showed that irrigation can improve the AGDB and canopy spectral reflectance of winter wheat. The spectral preprocessing algorithm can change the original spectral curve and improve the correlation between the original spectrum and the AGDB of winter wheat and screen out the bands of 1400 nm, 1479 nm, 1083 nm, 741 nm, 797 nm, and 486 nm, which have a high correlation with AGDB. The calibration sets and validation sets divided by different sample division methods and sample division ratios have different data-distribution characteristics. The UVE method can obviously eliminate some bands in the full-spectrum band. SVM is the best modeling algorithm. According to the universality of data, the better sample division method, sample division ratio, and modeling algorithm are SPXY, Ratio4, and SVM, respectively. Combined with the original spectrum and by using UVE to screen bands, a model with stable performance and high accuracy can be obtained. According to the particularity of data, the best model in this study is FD-CG-Ratio4-Full-SVM, for which the R2c, RMSEc, R2v, RMSEv, and RPD are 0.9487, 0.1663 kg·m−2, 0.7335, 0.3600 kg·m−2, and 1.9226, respectively, which can realize hyperspectral monitoring of winter wheat AGDB. This study can provide a reference for the rational irrigation of winter wheat in the field and provide a theoretical basis for monitoring the AGDB of winter wheat by using hyperspectral remote sensing technology.

Funder

Basic Research Program of Shanxi Province

National Natural Science Foundation of China

Key Technologies R & D Program of Shanxi Province

Earmarked Fund for Modern Agro-industry Technology Research System

Scientific and Technological Innovation Fund of Shanxi Agricultural University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference56 articles.

1. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation;Zhang;Sci. Total Environ.,2018

2. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China;Kang;Agric. Water Manag.,2002

3. Hyperspectral monitoring of aboveground dry biomass of winter wheat under different irrigation treatments;Yang;Chin. J. Ecol.,2019

4. Row spacing and irrigation effect on radiation use efficiency of winter wheat;Zhong;J. Anim. Plant Sci.,2015

5. Biomass as a factor contributing to winter wheat yield increase;Morgun;Fakt. Eksperimental Noi Evol. Org.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3