Improved Management Efficacy of Late Leaf Spot on Peanut Through Combined Application of Prothioconazole with Fluxapyroxad and Pyraclostrobin

Author:

Anco Daniel J.ORCID,Hiers Justin B.,Thomas James S.

Abstract

Late leaf spot, caused by Nothopassalora personata, is the most economically important fungal disease affecting peanut foliage in South Carolina and can result in combined management and yield loss costs of greater than 490 dollars/ha. Application of protectant fungicides is a critical part of effective integrated management under commercial production, and their strategic alternation and combination in management programs can provide enhanced control. Trials were conducted in Blackville, SC, from 2017 to 2019 to investigate whether combinations of prothioconazole with fluxapyroxad plus pyraclostrobin could provide more efficacious management of late leaf spot compared to either product alone. Two applications of 0.11 kg/ha prothioconazole with 0.05 kg/ha fluxapyroxad plus 0.1 kg/ha pyraclostrobin resulted in significantly (p < 0.05) less (24% to 42%) peanut canopy defoliation compared to the same number of applications of either product applied individually, with the combined application reflecting significant (p < 0.0202) synergism compared to component products as assessed through independent action methodology. An increased rate of fluxapyroxad plus pyraclostrobin application (0.1 and 0.2 kg/ha, respectively), with 0.16 kg/ha prothioconazole did not improve management relative to their combination at the examined lower rate (p = 0.89). Peanut yield was not adversely affected following combined applications. Cost-effectiveness of this combination depends on the actual disease intensity and yield potential of a given crop.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference25 articles.

1. Peanut Yield Loss in the Presence of Defoliation Caused by Late or Early Leaf Spot

2. Peanut Money-Maker 2019 Production Guide;Anco,2019

3. FRAC Code List 2019: Fungal Control Agents Sorted by Cross Resistance Pattern and Mode of Action (Including FRAC Code Numbering),2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3