Predicting Crop Evapotranspiration under Non-Standard Conditions Using Machine Learning Algorithms, a Case Study for Vitis vinifera L. cv Tempranillo

Author:

Egipto Ricardo1ORCID,Aquino Arturo2ORCID,Costa Joaquim Miguel3ORCID,Andújar José Manuel2ORCID

Affiliation:

1. INIAV, I.P.—Instituto Nacional de Investigação Agrária e Veterinária, Pólo de Inovação de Dois Portos, Quinta da Almoínha, 2565-191 Dois Portos, Portugal

2. CITES, Centro de Investigación en Tecnología, Energía y Sostenibilidad, Universidad de Huelva, La Rábida, Palos de la Frontera, 21819 Huelva, Spain

3. LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal

Abstract

This study focuses on assessing the accuracy of supervised machine learning regression algorithms (MLAs) in predicting actual crop evapotranspiration (ETc act) for a deficit irrigated vineyard of Vitis vinifera cv. Tempranillo, influenced by a typical Mediterranean climate. The standard approach of using the Food and Agriculture Organization (FAO) crop evapotranspiration under standard conditions (FAO-56 Kc-ET0) to estimate ETc act for irrigation purposes faces limitations in row-based, sparse, and drip irrigated crops with large, exposed soil areas, due to data requirements and potential shortcomings. One significant challenge is the accurate estimation of the basal crop coefficient (Kcb), which can be influenced by incorrect estimations of the effective transpiring leaf area and surface resistance. The research results demonstrate that the tested MLAs can accurately estimate ETc act for the vineyard with minimal errors. The Root-Mean-Square Error (RMSE) values were found to be in the range of 0.019 to 0.030 mm·h⁻¹. Additionally, the obtained MLAs reduced data requirements, which suggests their feasibility to be used to optimize sustainable irrigation management in vineyards and other row crops. The positive outcomes of the study highlight the potential advantages of employing MLAs for precise and efficient estimation of crop evapotranspiration, leading to improved water management practices in vineyards. This could promote the adoption of more sustainable and resource-efficient irrigation strategies, particularly in regions with Mediterranean climates.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference37 articles.

1. Intergovernmental Panel on Climate Change (IPCC) (2023, May 30). AR6 Synthesis Report: Climate Change, Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap3_FINAL.pdf.

2. Grapevine under deficit irrigation: Hints from physiological and molecular data;Chaves;Ann. Bot.,2010

3. Modern viticulture in Southern Europe: Vulnerabilities and strategies for adaptation to water scarcity;Costa;Agr. Water Manag.,2016

4. Controlling stomatal aperture in semi-arid regions—The dilemma of saving water or being cool?;Chaves;Plant Sci.,2016

5. Adapting plant material to face water stress in vineyards: Which physiological targets for an optimal control of plant water status?;Simonneau;OENO One,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3