Abstract
This paper presents the field measured data of the ambient temperature profile and the heat stress occurrences directly underneath ground-mounted solar photovoltaic (PV) arrays (monocrystalline-based), focusing on different temperature levels. A previous study has shown that a 1 °C increase in PV cell temperature results in a reduction of 0.5% in energy conversion efficiency; thus, the temperature factor is critical, especially to solar farm operators. The transpiration process also plays an important role in the cooling of green plants where, on average, it could dissipate a significant amount of the total solar energy absorbed by the leaves, making it a good natural cooling mechanism. It was found from this work that the PV system’s bottom surface temperature was the main source of dissipated heat, as shown in the thermal images recorded at 5-min intervals at three sampling times. A statistical analysis further showed that the thermal correlation for the transpiration process and heat stress occurrences between the PV system’s bottom surface and plant height will be an important factor for large scale plant cultivation in agrivoltaic farms.
Subject
Agronomy and Crop Science
Reference40 articles.
1. Australia’s Evolving Energy Future
https://aibe.uq.edu.au/files/1811/AIBE_Industry_Research_Series_Energy_Final.pdf
2. sustainability.uq.edu.au
3. Reliability of PV modules and balance-of-system components
4. Energy payback and life-cycle CO2 emissions of the BOS in an optimized 3·5 MW PV installation
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献