Combining Process Modelling and LAI Observations to Diagnose Winter Wheat Nitrogen Status and Forecast Yield

Author:

Revill AndrewORCID,Myrgiotis Vasileios,Florence AnnaORCID,Hoad Stephen,Rees RobertORCID,MacArthur Alasdair,Williams MathewORCID

Abstract

Climate, nitrogen (N) and leaf area index (LAI) are key determinants of crop yield. N additions can enhance yield but must be managed efficiently to reduce pollution. Complex process models estimate N status by simulating soil-crop N interactions, but such models require extensive inputs that are seldom available. Through model-data fusion (MDF), we combine climate and LAI time-series with an intermediate-complexity model to infer leaf N and yield. The DALEC-Crop model was calibrated for wheat leaf N and yields across field experiments covering N applications ranging from 0 to 200 kg N ha−1 in Scotland, UK. Requiring daily meteorological inputs, this model simulates crop C cycle responses to LAI, N and climate. The model, which includes a leaf N-dilution function, was calibrated across N treatments based on LAI observations, and tested at validation plots. We showed that a single parameterization varying only in leaf N could simulate LAI development and yield across all treatments—the mean normalized root-mean-square-error (NRMSE) for yield was 10%. Leaf N was accurately retrieved by the model (NRMSE = 6%). Yield could also be reasonably estimated (NRMSE = 14%) if LAI data are available for assimilation during periods of typical N application (April and May). Our MDF approach generated robust leaf N content estimates and timely yield predictions that could complement existing agricultural technologies. Moreover, EO-derived LAI products at high spatial and temporal resolutions provides a means to apply our approach regionally. Testing yield predictions from this approach over agricultural fields is a critical next step to determine broader utility.

Funder

Biotechnology and Biological Sciences Research Council

Natural Environment Research Council

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3