High-Resolution Mapping and Assessment of Salt-Affectedness on Arable Lands by the Combination of Ensemble Learning and Multivariate Geostatistics

Author:

Hateffard FatemehORCID,Balog KittiORCID,Tóth TiborORCID,Mészáros JánosORCID,Árvai MátyásORCID,Kovács Zsófia Adrienn,Szűcs-Vásárhelyi NóraORCID,Koós Sándor,László Péter,Novák Tibor JózsefORCID,Pásztor LászlóORCID,Szatmári GáborORCID

Abstract

Soil salinization is one of the main threats to soils worldwide, which has serious impacts on soil functions. Our objective was to map and assess salt-affectedness on arable land (0.85 km2) in Hungary, with high spatial resolution, using a combination of ensemble machine learning and multivariate geostatistics on three salt-affected soil indicators (i.e., alkalinity, electrical conductivity, and sodium adsorption ratio (n = 85 soil samples)). Ensemble modelling with five base learners (i.e., random forest, extreme gradient boosting, support vector machine, neural network, and generalized linear model) was carried out and the results showed that ensemble modelling outperformed the base learners for alkalinity and sodium adsorption ratio with R2 values of 0.43 and 0.96, respectively, while only the random forest prediction was acceptable for electrical conductivity. Multivariate geostatistics was conducted on the stochastic residuals derived from machine learning modelling, as we could reasonably assume that there is spatial interdependence between the selected salt-affected soil indicators. We used 10-fold cross-validation to check the performance of the spatial predictions and uncertainty quantifications, which provided acceptable results for each selected salt-affected soil indicator (for pH value, electrical conductivity, and sodium adsorption ratio, the root mean square error values were 0.11, 0.86, and 0.22, respectively). Our results showed that the methodology applied in this study is efficient in mapping and assessing salt-affectedness on arable lands with high spatial resolution. A probability map for sodium adsorption ratio represents sodic soils exceeding a threshold value of 13, where they are more likely to have soil structure deterioration and water infiltration problems. This map can help the land user to select the appropriate agrotechnical operation for improving soil quality and yield.

Funder

National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference99 articles.

1. Soil Threats in Europe: Status, Methods, Drivers and Effects on Ecosystem Services https://esdac.jrc.ec.europa.eu/content/soil-threats-europe-status-methods-drivers-and-effects-ecosystem-services

2. The threat of soil salinity: A European scale review

3. Soil and environmental issues in sandy soils

4. Soil salinity: A global threat to sustainable development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3