Research and Explainable Analysis of a Real-Time Passion Fruit Detection Model Based on FSOne-YOLOv7

Author:

Ou Juji1,Zhang Rihong1ORCID,Li Xiaomin1ORCID,Lin Guichao1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

Abstract

Real-time object detection plays an indispensable role in facilitating the intelligent harvesting process of passion fruit. Accordingly, this paper proposes an FSOne-YOLOv7 model designed to facilitate the real-time detection of passion fruit. The model addresses the challenges arising from the diverse appearance characteristics of passion fruit in complex growth environments. An enhanced version of the YOLOv7 architecture serves as the foundation for the FSOne-YOLOv7 model, with ShuffleOne serving as the novel backbone network and slim-neck operating as the neck network. These architectural modifications significantly enhance the capabilities of feature extraction and fusion, thus leading to improved detection speed. By utilizing the explainable gradient-weighted class activation mapping technique, the output features of FSOne-YOLOv7 exhibit a higher level of concentration and precision in the detection of passion fruit compared to YOLOv7. As a result, the proposed model achieves more accurate, fast, and computationally efficient passion fruit detection. The experimental results demonstrate that FSOne-YOLOv7 outperforms the original YOLOv7, exhibiting a 4.6% increase in precision (P) and a 4.85% increase in mean average precision (mAP). Additionally, it reduces the parameter count by approximately 62.7% and enhances real-time detection speed by 35.7%. When compared to Faster-RCNN and SSD, the proposed model exhibits a 10% and 4.4% increase in mAP, respectively, while achieving approximately 2.6 times and 1.5 times faster real-time detection speeds, respectively. This model proves to be particularly suitable for scenarios characterized by limited memory and computing capabilities where high accuracy is crucial. Moreover, it serves as a valuable technical reference for passion fruit detection applications on mobile or embedded devices and offers insightful guidance for real-time detection research involving similar fruits.

Funder

National Natural Science Foundation of China

Featured Innovation Projects of Guangdong Province of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3