Development of Monitoring Robot System for Tomato Fruits in Hydroponic Greenhouses

Author:

Seo DasomORCID,Cho Byeong-HyoORCID,Kim Kyoung-ChulORCID

Abstract

Crop monitoring is highly important in terms of the efficient and stable performance of tasks such as planting, spraying, and harvesting, and for this reason, several studies are being conducted to develop and improve crop monitoring robots. In addition, the applications of deep learning algorithms are increasing in the development of agricultural robots since deep learning algorithms that use convolutional neural networks have been proven to show outstanding performance in image classification, segmentation, and object detection. However, most of these applications are focused on the development of harvesting robots, and thus, there are only a few studies that improve and develop monitoring robots through the use of deep learning. For this reason, we aimed to develop a real-time robot monitoring system for the generative growth of tomatoes. The presented method detects tomato fruits grown in hydroponic greenhouses using the Faster R-CNN (region-based convolutional neural network). In addition, we sought to select a color model that was robust to external light, and we used hue values to develop an image-based maturity standard for tomato fruits; furthermore, the developed maturity standard was verified through comparison with expert classification. Finally, the number of tomatoes was counted using a centroid-based tracking algorithm. We trained the detection model using an open dataset and tested the whole system in real-time in a hydroponic greenhouse. A total of 53 tomato fruits were used to verify the developed system, and the developed system achieved 88.6% detection accuracy when completely obscured fruits not captured by the camera were included. When excluding obscured fruits, the system’s accuracy was 90.2%. For the maturity classification, we conducted qualitative evaluations with the assistance of experts.

Funder

Ministry of Agriculture, Food and Rural Affairs

Ministry of Science and ICT

Rural Development Administration

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3