Root−to−Shoot Signaling and Leaf Water−Use Efficiency in Peach Trees under Localized Irrigation

Author:

Xylogiannis Evangelos,Sofo AdrianoORCID,Dichio Bartolomeo,Montanaro Giuseppe,Mininni Alba N.ORCID

Abstract

Global climate change is affecting important natural resources including water. Increasing temperature will change rate of evaporation and transpiration, leading to variations in water availability, ground water recharge, and water consumption by plants. Thus, competition for water will be a major future challenge for agriculture. Increasing water productivity at farm level is necessary to increase the efficiency of the irrigation system, plant water−use efficiency (WUE) and to optimize irrigation management. We test the hypothesis that in field−grown, drip−irrigated nectarine trees, the roots in the un−irrigated inter−row soil produce chemical signals that increase in summer to induce stomatal closure and so increase WUE. Concentrations of abscisic acid (ABA) were determined in leaf, root, and xylem sap of drip−irrigated (D) trees in which only about 25% of the soil volume was wetted and compared with those of trees irrigated using microjets (M) in which the whole soil volume was wetted. We also examined the effects of increased ABA on root−to−shoot dry matter ratio, the ratio ABA to indole−3−acetic acid (IAA), sap pH, and fruit and shoot growth. Both D and M trees were maintained at optimal water status as judged by pre−dawn leaf water potentials (about −0.3 MPa). There were no significant differences between treatments in mean fruit size (fruit diameter) or in tree yield (total fruit weight). However, shoot length was strongly reduced in D trees (to 75%) compared to M trees (100%). The concentrations of ABA in the inter−row roots of D trees were increased by 59% and that in the leaves by 13% compared to in the M trees. Despite the similar water status of D and M trees, a clear chemical signal was triggered in terms of a significant increase in the ABA/IAA ratio. This signal influenced leaf stomatal conductance which was 40% lower in D trees than in M trees. The associated responses in photosynthesis and transpiration raised the WUE of D trees by 7%–10% compared to M trees. This field study shows that in drip−irrigated trees, an ABA root−to−shoot signal issues from the inter−row roots growing in soil that dries out during a Mediterranean summer (hot, low rainfall). This ABA−induced WUE increase was achieved principally through reduced stomatal conductance and reduced transpiration.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3